Динамика сооружений - определение. Что такое Динамика сооружений
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Динамика сооружений - определение

Молекулярная динамика; Классическая молекулярная динамика
Найдено результатов: 118
ДИНАМИКА СООРУЖЕНИЙ      
наука о колебаниях сооружений, вызываемых динамическими нагрузками, о методах расчета таких сооружений и способах уменьшения колебаний; раздел строительной механики.
Динамика сооружений      

теория колебаний сооружений, наука о колебаниях и методах расчёта сооружений, подвергающихся действию динамических нагрузок, и способах уменьшения колебаний; раздел строительной механики (См. Строительная механика). Динамические нагрузки на сооружение характеризуются настолько быстрым изменением во времени их величины, направления или места приложения, что вызывают колебания сооружения, которые необходимо учитывать при его расчёте. Таковы нагрузки, возникающие при работе машин с неуравновешенными движущимися массами, при ударах массивных тел, при землетрясениях и взрывах и т.д. Колебательный характер имеют не только перемещения точек сооружения, но и внутренние усилия и напряжения в его элементах. Определение ожидаемых амплитуд перемещений, внутренних усилий и напряжений в сооружении при его колебаниях под действием динамической нагрузки (т. е. при вынужденных колебаниях) и сравнение их с допустимыми значениями составляют основное содержание динамического расчёта сооружения. Допустимые значения амплитуд внутренних усилий обусловлены требованиями прочности и долговечности строительных конструкций, а значения амплитуд скоростей и ускорений колебаний зданий и сооружений, в которых находятся люди или размещено производство с точной технологией, - требованиями безвредного влияния колебаний на здоровье людей и на качество выпускаемой продукции.

Д. с. тесно связана со статикой сооружений (См. Статика сооружений), являющейся основным разделом строительной механики. Вопрос о прочности и долговечности сооружения решается на основе статических (на статические нагрузки) и динамических расчётов. Д. с. использует хорошо разработанные методы статики сооружений, однако существенно их обобщает с помощью Д'Аламбера принципа, вводя в уравнение новое переменное - время. По методам исследования различают Д. с. экспериментальную и теоретическую.

Экспериментальная Д. с. с помощью опытов в натуре и на моделях изучает динамические нагрузки на сооружения (от стационарных и подвижных машин и механизмов, сейсмические, ветровые, пульсации давления жидкостей и газов в водоводах, котлах и т.п.) и динамические характеристики материалов и конструкций (динамические Модули упругости, внутреннее трение и внешние сопротивления, пределы выносливости (См. Выносливость) материалов и соединений конструкций - заклёпочных, сварных и др., пределы прочности и текучести при больших скоростях деформирования, вызываемых мощными ударами), проверяет надёжность расчётных схем сооружений и эффективность способов уменьшения колебаний.

Теоретическая Д. с., опираясь на результаты исследований экспериментальной Д. с., разрабатывает аналитические и численные методы определения амплитуд вынужденных колебаний (основная проблема Д. с.), а также частот и форм свободных (или собственных) колебаний сооружений. Методы решения основной проблемы зависят от вида динамической нагрузки и расчётной схемы сооружения. По своему виду динамические нагрузки разделяются на детерминированные, изменяющиеся во времени по определённому закону, и случайные, изменяющиеся во времени незакономерно и характеризуемые статистическими величинами. В зависимости от вида расчётной схемы сооружения (балка, ферма, рама, арка, плита, свод, оболочка) применяют соответствующий метод для определения амплитуды колебаний как функции координат точек сооружения. Методы определения частот и форм колебаний зависят только от расчётной схемы сооружения. Знание частот и формы соответствующих колебаний сооружения позволяет ещё до его расчёта на динамическую нагрузку предугадать качественную картину вынужденных колебаний, максимально сократить этот расчёт и выявить невыгодные значения частот периодических нагрузок и продолжительности кратковременных нагрузок.

Д. с. как наука зародилась в 20-х гг. 20 в.; её возникновение было обусловлено практическими нуждами строительства, значительным увеличением динамических нагрузок на сооружения (повышением мощностей и скоростей движения машин, скоростей подвижных нагрузок и т.д.). Однако развитие Д. с. в эти годы существенно отставало от её теоретической базы - теории колебаний и строительной механики и от фактической информации, доставляемой динамическими испытаниями сооружений и строительных материалов и изучением эксплуатационных и динамических нагрузок.

Применявшийся в этот период традиционный метод учёта влияния динамической нагрузки (введение в статический расчёт сооружения динамического коэффициента нагрузки) был несовершенным; он игнорировал динамические характеристики сооружений и нагрузок. В 30-х гг. Д. с. стала быстро развиваться, опираясь на экспериментальные данные и достаточно строгую теорию (Д. Д. Баркан, Н. И. Безухов, С. А. Бернштейн, В. В. Болотин, К. С. Завриев, Ю. А. Нилендер, А. Ф. Смирнов, И. М. Рабинович и др.). Успехи вычислительной техники в послевоенное время дали новый толчок развитию Д. с., позволив с помощью ЭВМ практически решать более сложные задачи (Центральный научно-исследовательский институт строительных конструкций - ЦНИИСК, Московский институт инженеров ж.-д. транспорта - МИИТ и др.).

В 50-60-х гг. в СССР впервые в мировой практике были опубликованы инструкции по динамическому расчёту сооружений (разработанные ЦНИИСК и НИИ оснований и подземных сооружений), отражавшие высокий уровень развития Д. с. в СССР. В эти же годы получили развитие новые важные направления в Д. с.: динамический расчёт конструкций с нелинейными упругими или диссипативными характеристиками (Я. Г. Пановко, Г. С. Писаренко, Е. С. Сорокин и др.), с учётом пластических деформаций (А. Р. Ржаницин и др.), конструкций, лежащих или стоящих на упругом инерционном основании (Н. М. Бородачёв, Б. Г. Коренев и др.), а также сооружений на случайные нагрузки с применением методов статистической динамики или теории случайных процессов (М. Ф. Барштейн, В. В. Болотин, И. И. Гольденблат, Н. А. Николаенко и др.).

Исследования по вопросам Д. с. публикуются в журнале "Строительная механика и расчёт сооружений" (М., с 1959), в сборнике "Исследования по теории сооружений", в трудах лаборатории динамики ЦНИИСК, кафедры теоретической механики МИИТ и др.

Лит.: Сорокин Е. С., Динамический расчет несущих конструкций зданий, М., 1956; Смирнов А. Ф., Устойчивость и колебания сооружений, М., 1958; Болотин В. В., Статистические методы в строительной механике, 2 изд., М., 1965; Новацкий В., Динамика сооружений, пер. с польск., М., 1963.

Е. С. Сорокин.

Системная динамика         
  • Динамическая диаграмма «Вывод на рынок нового продукта»
НАПРАВЛЕНИЕ В ИЗУЧЕНИИ СЛОЖНЫХ СИСТЕМ
Динамика систем; Системодинамика
Системная динамика — направление в изучении сложных систем, исследующее их поведение во времени и в зависимости от структуры элементов системы и взаимодействия между ними. В том числе: причинно-следственных связей, петель обратных связей, задержек реакции, влияния среды и других. Особое внимание уделяется компьютерному моделированию таких систем.
Групповая динамика         
Групповая динамика — процессы взаимодействия членов малой группы, а также изучающее эти процессы научное направление; его основателем считается Курт Левин, который и ввел термин групповая динамика, описывающий позитивные и негативные процессы, происходящие в социальной группе.
ДИНАМИКА         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
и, мн. нет, ж.
1. Раздел механики, изучающий движение тел в зависимости от действующих на них сил.||Ср. КИНЕМАТИКА, КИНЕТИКА, СТАТИКА.
2. Состояние движения, ход развития какого-нибудь явления, процесса. Д. экономического развития стра-ны. Динамический - относящийся к динамике.
3. Движение, действие, развитие. Исследовать деятельность сердца в динамике.
динамика         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
ДИН'АМИКА, динамики, мн. нет, ·жен. (от ·греч. dynamikos - действующий).
1. Отдел механики, изучающий законы движения тел в зависимости от действующих на них сил (мех.).
2. Ход развития, изменения какого-нибудь явления под влиянием действующих на него сил; ант. статика
во 2 ·знач. (научн.). Динамика социального процесса.
3. перен. Обилие движения, действия (·книж. ). В пьесе много динамики.
динамика         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
жен., ·*греч. наука о движении тел, о силах двигающих. Механика делится на статику и динамику. Динамический, относящийся к динамике; основанный не на отвлеченном понятии о теле, о веществе, а на деятельных силах тела. Динамическое учение, в физике противоположно атоми(сти)ческому, отвергая образование тел из неделимых атомов и объясняя образование их взаимным противодействием и равновесием сил. Динамик, динамист муж. последователь динамической школы. Динамометр муж. снаряд для из мерения силы, силомер.
ДИНАМИКА         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
в музыке - различной степени силы звучания, громкости и их изменения. Обозначаются итальянскими терминами: пиано (piano, сокр. p) - тихо; форте (forte, сокр. f) - громко; крещендо (crescendo) - постепенно усиливая; диминуэндо (diminuendo) - постепенно затихая и др.
---
(от греч. dynamis - сила), раздел механики, в котором изучается движение тел под действием приложенных к ним сил. Основа динамики - Ньютона законы механики.
Динамика         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
I Дина́мика (от греч. dynamikós - сильный, от dýnamis - сила)

раздел механики (См. Механика), посвящённый изучению движения материальных тел под действием приложенных к ним сил. В основе Д. лежат три закона И. Ньютона (см. Ньютона законы механики), из которых как следствия получаются все уравнения и теоремы, необходимые для решения задач Д.

Согласно первому закону (закону инерции) материальная точка, на которую не действуют силы, находится в состоянии покоя или равномерного прямолинейного движения; изменить это состояние может только действие силы. Второй закон, являющийся основным законом Д., устанавливает, что при действии силы F материальная точка (или поступательно движущееся тело) с массой m получает ускорение w, определяемое равенством

mw = F. (1)

Третьим законом является закон о равенстве действия и противодействия (см. Действия и противодействия закон). Когда к телу приложено несколько сил, F в уравнении (1) означает их равнодействующую. Этот результат следует из закона независимости действия сил, согласно которому при действии на тело нескольких сил каждая из них сообщает телу такое же ускорение, какое она сообщила бы, если бы действовала одна.

В Д. рассматриваются два типа задач, решения которых для материальной точки (или поступательно движущегося тела) находятся с помощью уравнения (1). Задачи первого типа состоят в том, чтобы, зная движение тела, определить действующие на него силы. Классическим примером решения такой задачи является открытие Ньютоном закона всемирного тяготения: зная установленные И. Кеплером на основании обработки результатов наблюдений законы движения планет (см. Кеплера законы), Ньютон показал, что это движение происходит под действием силы, обратно пропорциональной квадрату расстояния между планетой и Солнцем. В технике такие задачи возникают при определении сил, с которыми движущиеся тела действуют на связи, т. е. др. тела, ограничивающие их движение (см. Связи механические), например при определении сил давления колёс на рельсы, а также при нахождении внутренних усилий в различных деталях машин и механизмов, когда законы движения этих машин (механизмов) известны.

Задачи второго типа, являющиеся в Д. основными, состоят в том, чтобы, зная действующие на тело силы, определить закон его движения. При решении этих задач необходимо ещё знать так называемые начальные условия, т. е. положение и скорость тела в момент начала его движения под действием заданных сил. Примеры таких задач: зная величину и направление скорости снаряда в момент его вылета из канала ствола (начальная скорость) и действующие на снаряд при его движении силу тяжести и силу сопротивления воздуха, найти закон движения снаряда, в частности его траекторию, горизонтальную дальность полёта, время движения до цели и др.; зная скорость автомобиля в момент начала торможения и силу торможения, найти время движения и путь до остановки; зная силу упругости рессор и вес кузова вагона, определить закон его колебаний, в частности частоту этих колебаний, и многие др.

Задачи Д. для твёрдого тела (при его непоступательном движении) и различных механических систем решаются с помощью уравнений, которые также получаются как следствия второго закона Д., применяемого к отдельным частицам системы или тела; при этом ещё учитывается равенство сил взаимодействия между этими частицами (третий закон Д.). В частности, таким путём для твёрдого тела, вращающегося вокруг неподвижной оси z, получается уравнение:

lzε = Mz,

где Iz - Момент инерции тела относительно оси вращения, ε - угловое ускорение тела, Mz - Вращающий момент, равный сумме моментов действующих сил относительно оси вращения. Это уравнение позволяет, зная закон вращения, т. е. зависимость ε от времени, найти вращающий момент (задача первого типа) или, зная вращающий момент и начальные условия, т. е. начальное положение тела и начальную угловую скорость, найти закон вращения (задача второго типа).

При изучении движения механических систем часто применяют так называемые общие теоремы Д., которые также могут быть получены как следствия 2-го и 3-го законов Д. К ним относятся теоремы о движении центра масс (или центра инерции) и об изменении количества движения (См. Количество движения), момента количества движения (См. Момент количества движения) и кинетической энергии системы. Иной путь решения задач Д. связан с использованием вместо 2-го закона Д. др. принципов механики (см. Д' Аламбера принцип (См. Д'Аламбера принцип), Д' Аламбера - Лагранжа принцип (См. Д'Аламбера - Лагранжа принцип), Вариационные принципы механики) и получаемых с их помощью уравнений движения, в частности Лагранжа уравнений (См. Лагранжа уравнения) механики.

Уравнение (1) и все следствия из него справедливы только при изучении движения по отношению к так называемой инерциальной системе отсчёта (См. Инерциальная система отсчёта), которой для движений внутри солнечной системы с высокой степенью точности является звёздная система (система отсчёта с началом в центре Солнца и осями, направленными на удалённые звёзды), а при решении большинства инженерных задач - система отсчёта, связанная с Землёй. При изучении движения по отношению к неинерциальным системам отсчёта, т. е. системам, связанным с ускоренно движущимися или вращающимися телами, уравнение движения можно также составлять в виде (1), если только к силе F прибавить так называемую переносную и Кориолиса силы (См. Кориолиса сила) инерции (см. Относительное движение). Такие задачи возникают при изучении влияния вращения Земли на движение тел по отношению к земной поверхности, а также при изучении движения различных приборов и устройств, установленных на движущихся объектах (судах, самолётах, ракетах и др.).

Помимо общих методов изучения движения тел под действием сил, в Д. рассматриваются специальные задачи: теория Гироскопа, теория механических колебаний (См. Колебания), теория устойчивости движения (См. Устойчивость движения), теория Удара, механика тела переменной массы (См. Механика тел переменной массы) и др. С помощью законов Д. изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов (см. Упругости теория, Пластичности теория, Гидроаэромеханика, Газовая динамика). Наконец, в результате применения методов Д. к изучению движения конкретных объектов возник ряд специальных дисциплин: Небесная механика, внешняя Баллистика, динамика паровоза, автомобиля, самолёта, Динамика ракет и т.п.

Методы Д., базирующейся на законах Ньютона и называются классической Д., описывают движения самых различных объектов (от молекул до небесных тел), происходящие со скоростями от долей мм/сек до десятков км/сек (скорости ракет и небесных тел), и имеют огромное значение для современного естествознания и техники. Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света; такие движения подчиняются др. законам (см. Квантовая механика, Относительности теория).

Лит. см. при ст. Механика.

С. М. Тарг.

II Дина́мика

в музыке, совокупность явлений, связанных с применением различных степеней силы звучания, громкости. Основные градации силы звучания: piano (в нотах сокращённо р) - тихо, слабо и forte (f) - громко, сильно. Производные от piano в сторону ослабления: pianissimo (рр) - очень тихо, piano-pianissimo (ppp) - чрезвычайно тихо и т.д. (до ррррр); от forte в сторону усиления: fortissimo (ff) - очень громко, forte-fortissimo (fff) - чрезвычайно громко и т.д. (до fffff). Применяются также обозначения mezzo piano (mp) - умеренно тихо и mezzo forte (mf) - умеренно громко. Все эти обозначения относятся к более или менее протяжённым музыкальным отрывкам, в которых выдерживается в общем единая и неизменная степень громкости звучания. Внутри таких отрывков нередко выделяются по громкости отдельные звуки, что обозначается терминами forzato, sforzato и др. (см. Акцент). В музыке широко используется и постепенное усиление или ослабление звучания. Усиление звучания обозначается термином crescendo (cresc, знак ), ослабление - термином decrescendo или diminuendo (decresc. или dim., знак ). Усиление звучания может вести к новой, более высокой степени выдерживаемой некоторое время громкости, может сменяться ослаблением звучания, образуя вместе с ним динамическую "волну". Для уточнения динамических обозначений к ним могут прибавляться слова meno (меньше, менее), quasi (как бы, подобно), molto (очень), росо (несколько), росо а росо (мало-помалу, постепенно) и т.п.

Градации динамики и их обозначения имеют в музыке лишь относительное значение; абсолютная величина громкости зависит от многих факторов, в том числе от типа инструмента, при ансамблевом исполнении - от количества партий и числа исполнителей на каждую партию, а также от акустических свойств помещения. Так, по абсолютному значению piano на трубе гораздо громче, чем forte вокалиста, громкость звучания piano у целого хора значительно выше, чем у отдельного его участника, и т.п. Абсолютные величины громкости измеряются в акустике и выражаются в фонах (см. Громкость звука).

ДИНАМИКА         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
часть кинетики - раздела теоретической механики, в котором рассматриваются тела в условиях воздействия на них заданных сил. Кинетика подразделяется на статику и динамику. В статике рассматриваются тела в равновесии, т.е. в состоянии покоя или равномерного прямолинейного движения. В динамике же рассматриваются тела, скорость движения которых под действием сил изменяется либо по величине, либо по направлению (неравномерное или непрямолинейное движение).
См. также:

Википедия

Метод классической молекулярной динамики

Метод молекулярной динамики (метод МД) — метод, в котором временная эволюция системы взаимодействующих атомов или частиц отслеживается интегрированием их уравнений движения

Что такое ДИНАМИКА СООРУЖЕНИЙ - определение